If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+83t+4.5=0
a = -16; b = 83; c = +4.5;
Δ = b2-4ac
Δ = 832-4·(-16)·4.5
Δ = 7177
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(83)-\sqrt{7177}}{2*-16}=\frac{-83-\sqrt{7177}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(83)+\sqrt{7177}}{2*-16}=\frac{-83+\sqrt{7177}}{-32} $
| 5x+7-x+9=11+3x+5+x | | 2(4x-9)=22 | | 25=y+5.1 | | 11^7x=15 | | 32-2p=64 | | 4(3q+10=6(2q-9) | | 6x-9.4=-24.8 | | 6t^2+19t–7=0 | | n/5=7.5/2.5 | | 0.5x-3.5=24.8 | | 2a+22=-48-3a | | -7p-4(p-4)=6(-2-3p)+7 | | x2+28x=0 | | -2k+5=55 | | -38x2+108x+225=0 | | x+9/5=1/5 | | 7x-10=-74 | | m-6=3*m+14 | | 2m+8-2m=8 | | x/6=14/7 | | (5x-14)+(4x)+(x)=180 | | k/4.5=9/3 | | X+2/3x+x+2/3x=400 | | 5x-590=130 | | 6x+3-5x=4 | | n/30=28/35 | | (5x-14)+(4x)+x=180 | | 2x-17.8=6.2 | | x÷5-11=-5 | | 8-3(x+2)=x-3x | | 15x=-15x | | 0.02x+0.10(100-x)=0.42 |